Deep Active Learning over the Long Tail
نویسندگان
چکیده
This paper is concerned with pool-based active learning for deep neural networks. Motivated by coreset dataset compression ideas, we present a novel active learning algorithm that queries consecutive points from the pool using farthest-first traversals in the space of neural activation over a representation layer. We show consistent and overwhelming improvement in sample complexity over passive learning (random sampling) for three datasets: MNIST, CIFAR-10, and CIFAR-100. In addition, our algorithm outperforms the traditional uncertainty sampling technique (obtained using softmax activations), and we identify cases where uncertainty sampling is only slightly better than random sampling.
منابع مشابه
Global Warming: New Frontier of Research Deep Learning- Age of Distributed Green Smart Microgrid
The exponential increase in carbon-dioxide resulting Global Warming would make the planet earth to become inhabitable in many parts of the world with ensuing mass starvation. The rise of digital technology all over the world fundamentally have changed the lives of humans. The emerging technology of the Internet of Things, IoT, machine learning, data mining, biotechnology, biometric, and deep le...
متن کاملFeature Transfer Learning for Deep Face Recognition with Long-Tail Data
Real-world face recognition datasets exhibit long-tail characteristics, which results in biased classifiers in conventionally-trained deep neural networks, or insufficient data when long-tail classes are ignored. In this paper, we propose to handle long-tail classes in the training of a face recognition engine by augmenting their feature space under a center-based feature transfer framework. A ...
متن کاملActive Learning: An Approach for Reducing Theory-Practice Gap in Clinical Education
Introduction: The gap between theory and practice in clinical fields, including nursing, is one of the main problems that many solutions have been suggested to eliminate it. In this article, we have tried to investigate its solution through active learning. Methods: In this review article, searching articles published during 2000-2012 was done through library references, scientific databases. ...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملRange Loss for Deep Face Recognition with Long-tail
Convolutional neural networks have achieved great improvement on face recognition in recent years because of its extraordinary ability in learning discriminative features of people with different identities. To train such a welldesigned deep network, tremendous amounts of data is indispensable. Long tail distribution specifically refers to the fact that a small number of generic entities appear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.00941 شماره
صفحات -
تاریخ انتشار 2017